STRUCTURE OF HOLOTHURIN B A PHARMACOLOGICALLY ACTIVE TRITERPENE-OLIGOGLYCOSIDE FROM THE SEA CUCUMBER HOLOTHURIA LEUCOSPILOTA BRANDT

Isao Kitagawa,^{a)*} Takao Nishino,^{a)} Takao Matsuno,^{b)} Hideo Akutsu,^{c)} and Yoshimasa Kyogoku^{c)}

a) Faculty of Pharmaceutical Sciences, Osaka University, 133-1, Yamada-kami, Suita, Osaka 565, Japan; b) Kyoto College of Pharmacy, Misasagi, Yamashina-ku, Kyoto 607, Japan; c) Institute for Protein Research, Osaka University, 5311, Yamadakami, Suita, Osaka 565, Japan

(Received in Japan 26 December 1977; received in UK for publication 24 January 1978)

Holothurin was first isolated in 1955 as a hemolytic and piscicidal principle of the sea cucumber Holothuria leucospilota Brandt (= H. vagabunda Selenka) (Japanese name: nise-kuronamako).¹⁾ Afterwards, two triterpene-oligoglycosides, holothurin A and B, have been characterized from H. leucospilota and H. lubrica,²⁾ and holothurin A from Actinopyga agassizi.³⁾ Holothurin A has been presumed to be an oligoglycoside of a lanostane-type triterpene containing a sulfate, D-glucose, 3-0-Me-D-glucose, D-quinovose, and D-xylose,^{3a,b)} while holothurin B to comprise the same aglycone, a sulfate, D-quinovose, and D-xylose,²⁾ and to be a quinovosylxyloside.^{2b)} Although two artifact aglycones, 22,25-epoxy-holosta-7,9(11)-diene-36,17α-diol $(1)^{3a,b)}$ and 22,25-epoxy-12β-methoxy-holost-9(11)-ene-3β,17α-diol (2),^{3c)} have been isolated, the total structure of these oligoglycosides have not yet been established. As a continuing study in a series of our works on the oligoglycoside constituents of the species of Holothurin A and B isolated from H. leucospilota. This paper provides the evidence being consistent with the structure (7) for holothurin B.

Holothurin B (7), $C_{41}H_{63}O_{17}SNa$,⁶⁾ mp 224-226°, $[\alpha]_D^{17}$ -11.0° (MeOH): UV (MeOH): transparent above 210 nm; IR (KBr, cm⁻¹): 3385 (br, OH), 1742 (γ -lactone), 1634 (C=C), 1230, 830 (sulfate),⁷) 1060 (br, C-O-C); CD (MeOH): $[\Theta]_{200}$ +55400 (pos. max.), $[\Theta]_{221}$ -8300 (neg. max.), was obtained in 0.8% yield from the aq. 70% EtOH ext. of the body wall of *H. leucospilota*(collected in Miya-

985

zaki Pref. in July). It is positive for the potassium rhodizonate reagent.⁸⁾ On hydrolysis with snail enzyme,⁹⁾ it gave two prosapogenols: DS-Pro-B (4) (major) and Pro-B (5).

DS-Pro-B (4), $C_{35}H_{54}O_{10} \cdot H_2O$, mp 291-292.5°, $[\alpha]_D^{28}$ -5.0° (MeOH); IR (KBr): 3350, 1741, 1632, 1055; CD (MeOH): $[\Theta]_{202}$ +53000 (pos. max.), $[\Theta]_{222}$ -9000 (neg. max.), lacks the sulfate group and furnished 1 and xylose on acid hydrolysis. The PMR spectrum of 4 (d_5 -py.) shows the signals at δ 1.07 (4-Me), 1.20 (25-Me₂), 1.34 (4-Me), 1.37 (10-Me), 1.69 (14-Me), 1.76 (20-Me)(all s, tert. Me x 7), 4.14 (t, J= 6 Hz, 22-H), 4.35 (t-like, J= 7, 3α-H), 4.84 (d, J= 7, anom. H of β -D-xylopyranoside), 4.96 (d, J= 5, 12 β -H),¹⁰⁾ and 5.66 (d, J= 5, 11-H).¹⁰⁾ The CD maximum due to C=C $\pi \rightarrow \pi^*$ transition^{4,11} observed in $\frac{4}{2}$ and $\frac{7}{2}$ in connection with $J_{11-H,12-H}$ in $\frac{4}{2}$ indicates the presence of a 9(11)-en-12 α -ol moiety in the lanostane-type aglycone of 4 and 7. The CMR spectrum of 4_{c} (d₅-py.)¹² provides a further evidence supporting the 9(11)-en-12-o1 structure by the signals at §153.7 (s, C-9), 115.5 (d, C-11), 71.4 (d, C-12).¹³⁾ Presence of a tetrahydrofurantype side chain in $\frac{4}{2}$ and $\frac{7}{2}$ is shown by the PMR signals together with the resembled CMR signals of C-22 and C-25 in 4 and 7 as compared with those in 1^{14} Based on the foregoing evidence, the aglycone of $\frac{4}{5}$ has been formulated as $\frac{3}{5}$ (with undefined stereochem. at C-20). Furthermore, the β -D-xyloside linkage in 4 has been located at 3β -OH of 3 on the basis of the glycosidation shift¹⁵⁾ which is observed in the CMR spectrum of 4 as compared with that of 1.¹⁶⁾ As for the configuration at C-20 in 3, the pyridine-induced solvent shift¹⁷⁾ for the 20-Me PMR signals in 1 and la is informative (Table 1), thus the configuration at C-20 in 1 (consequently in 3) being assigned as S. The structure of DS-Pro-B has now been expressed as 4.

Another prosapogenol Pro-B (5), $C_{35}H_{53}O_{13}SNa$ (amorph.), gave 1 and xylose on acid hydrolysis, while solvolysis with dioxane-pyridine^{5,18)} of 5 furnished 4. In the CMR spectrum of 5, the esterification shift¹⁹⁾ of C-4' is observed (Table II), thus the location of the sulfate group in 5 being suggested as 4'-OH of 4.

Solvolysis^{5,18)} of holothurin B (7) gave a desulfated deriv. DS-HL-B (6), $C_{41}H_{64}O_{14}\cdot 1/2H_{2}O_{14}$, mp 283-286°; IR (KBr): 3380, 1742, 1627, 1055; CD (MeOH): $[\Theta]_{199}$ +71700 (pos. max.), $[\Theta]_{220}$ -7200 (neg. max.), which, on acid hydrolysis, liberated 1 and one mole each of xylose and quinovose. The hepta-O-methyl deriv. (6a) (M⁺ 878), IR (CCl₄): no OH; CD (MeOH): $[\Theta]_{200}$ +63400 (pos. max.), $[\Theta]_{222}$ -7400 (neg. max.), shows two anomeric proton signals at δ 4.34 and 4.62 (both d, J= 7) (CDCl₃), thus two sugars being linked with β -orientation (⁴C₁ form). On methanolysis, 6a gave Me 2,3,4-tri-O-methyl-quinovopyranoside and Me 3,4-di-O-methyl-xylopyranoside.

On the other hand, the penta-O-methyl deriv. $(\frac{7a}{2})$ of holothurin B, IR (CHCl₃): 3440 (w),

1751, 1638, 1260, 1080, 834, shows two anomeric proton signals at δ 4.47 and 4.60 (both d, J= 7). On methanolysis, 7a gave Me 2,3,4-tri-O-methyl-quinovopyranoside and Me 3-O-methyl-xylopyranoside. Based on the accumulated evidence described above, the total structure of holothurin B

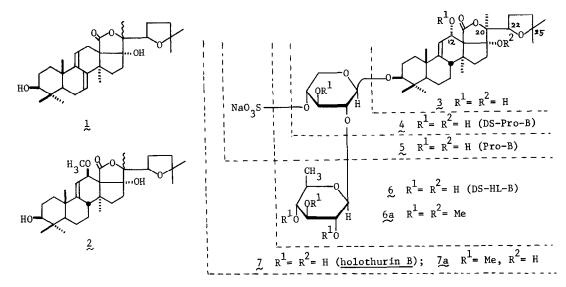


Table I (PMR at 90 MHz)

		4-Me ₂	10-Me	14-Me	20-Me	25-Me ₂	7-н	11-н	22-н
1~	CDC13	0.90, 1.01 1.08, 1.20	1.09	1.19	1.36	1.22, 1.26	5.51 (m)	5.27 (m)	4.22 (t,6)
	d ₅ -py.	1.08, 1.20	1.38	1.46	1.53	1.11, 1.14	5.64 (m)	5.41 (m)	4.24 (t,6)
la ∼	CDC13	0.89, 0.97	1.11	1.18	1.34	1.21, 1.24	5.49 (m)	5.26 (m)	4.21 (t,7)
	d ₅ −py.	0.91, 1.01	1.34	1.47	1.54	1.08, 1.14	5.62 (m)	5.36 (m)	4.27 (t,7)

Table II (CMR in d₅-pyridine)

	C-1'	-2'	-3'	-4'	-5'	C-1"	-2"	-3"	-4"	-5"	-6"	OMe
DS-Pro-B (4)	107.6	75.4	78.5	71.1	67.1							
Pro-B (5)	107.1	75.2	76.1	76.1	64.5				-	-		
DS-HL-B (<u>6</u>)	106.2	84.0	78.1	70.9	66.7	105.7	76.7	77.8	77.1	73.4	18.4	
holothurin B $(\frac{7}{2})$	105.7	83.4	76.6	<u>75.1</u>	64.0	105.2	76.0	77.4	76.6	73.4	18.5	
Me β-D-xylo- pyranoside	106.0	74.6	78.1	70.9	67.0							56.6
Me β-D-quinovo- pyranoside						105.3	76.6	78.0	77.2	73.8	18.5	56.5

has been elucidated as χ , which is further supported by the CMR analyses of 4, 5, 6, and χ (data of the carbohydrate moieties being given in Table II). The configuration at C-22 is under investigation. The pharmacological activities of holothurin B (7) will be published elsewhere by Prof. Y. Enomoto of Miyazaki University. The authors are grateful to Prof. Enomoto and his students for their kind help for collecting the sea cucumber.

References and Footnotes

- T. Yamanouchi, <u>Publ. Seto Mar. Biol. Lab.</u>, <u>4</u>, 183 (1955). 2) a) T. Matsuno and T. Yamanouchi, <u>Nature</u>, <u>191</u>, 75 (1961); b) T. Matsuno and J. Iba, <u>Yakugaku Zasshi</u>, <u>86</u>, 637 (1966); c) T. Yasumoto, K. Nakamura, and Y. Hashimoto, <u>Agr. Biol. Chem.</u>, <u>31</u>, 7 (1967); 3)a) J. D. Chanley, R. Ledeen, J. Wax, R. F. Nigrelli, and H. Sobotka, <u>J. Am. Chem. Soc</u>., <u>81</u>, 5180 (1959); b) J. D. Chanley, T. Mezzetti, and H. Sobotka, <u>Tetrahedron</u>, <u>22</u>, 1857 (1966); c) J. D. Chanley and C. Rossi, <u>ibid</u>., <u>25</u>, 1897 (1969); d) Idem, <u>ibid</u>., <u>25</u>, 1911 (1969); e) J. D. Chanley, J. Perlstein, R. F. Nigrelli, and H. Sobotka, <u>Ann. N. Y. Acad. Sci.</u>, <u>90</u>, 902 (1960).
- 4) a) I. Kitagawa, T. Sugawara, I. Yosioka, and K. Kuriyama, <u>Chem. Pharm. Bull.(Tokyo)</u>, <u>24</u>, 266 (1976); b) I. Kitagawa, T. Sugawara, and I. Yosioka, <u>ibid.</u>, <u>24</u>, 275 (1976). 5) a) I. Kitagawa, M. Kobayashi, T. Sugawara, and I. Yosioka, <u>Tetrahedron Letters</u>, <u>1975</u>, 967; b) I. Kitagawa and M. Kobayashi, <u>ibid.</u>, <u>1977</u>, 859. 6) Compounds given with the chemical formulae gave the satisfactory analytical values. 7) J. R. Turvey, <u>Adv. Carbohydr. Chem.</u>, <u>20</u>, 183 (1965). 8) a) D. P. Burma, <u>Anal. Chim. Acta</u>, <u>9</u>, 513 (1953); b) J. J. Schneider and M. L. Lewbart, <u>J. Biol. Chem.</u>, <u>222</u>, 787 (1956).
- 9) Prepared from snail by the method of A. Okano, K. Hoji, T. Miki, and K. Miyatake, <u>Chem.</u> <u>Pharm. Bull.(Tokyo)</u>, <u>5</u>, 167 (1957). 10) Vicinity of these two protons was confirmed by the double resonance experiments. 11) a) A. Yogev and Y. Mazur, <u>Chem. Comm.</u>, <u>1965</u>, 552; b) A. I. Scott and A. D. Wrixon, <u>Tetrahedron</u>, <u>26</u>, 3695 (1970); <u>27</u>, 4787 (1971); c) H. Irie, S. Uyeo, and K. Kuriyama, <u>Tetrahedron Letters</u>, <u>1971</u>, 3467; d) J. Hudec and D. N. Kirk, <u>Tetrahedron</u>, <u>32</u>, 2475 (1976). 12) TMS as the internal standard (25.05 MHz). Abbreviations given in the parentheses denote the signal patterns observed in the off-resonance experiments.
- 13) The corresponding signals in the CMR spectrum of 1 are observed at 6147.9 (s, C-9), 112.7 (d, C-11), and 38.4 (t, C-12). 14) C-22: 681.0 (d) in 1, 80.6 (d) in 4 and 7; C-25: 681.3 (s) in 1, 4, and 7. 15) a) R. Kasai, M. Suzuo, J. Asakawa, and O. Tanaka, <u>Tetrahedron Letters</u>, <u>1977</u>, 175; b) K. Tori, S. Seo, Y. Yoshimura, H. Arita, and Y. Tomita, <u>ibid.</u>, <u>1977</u>, 179. 16) C-3: 678.1 (d) in 1, 88.5 (d) in 4; C-4: 639.4 (s) in 1, 40.0 (s) in 4; C-2: 628.5 (t) in 1, 27.1 (t) in 4. Since 3 has not yet been isolated, 1 was used as the standard. 17) a) P. V. Demarco, E. Farkas, D. Doddrell, N. L. Mylari, and E. Wenkert, J. Am. Chem. Soc., <u>90</u>, 5480 (1968); b) I. Kitagawa, M. Yoshikawa, and I. Yosioka, <u>Tetrahedron Letters</u>, <u>1974</u>, 469.
- J. McKenna and J. K. Norymberski, <u>J. Chem. Soc.</u>, <u>1957</u>, 3889. 19) a) Y. Terui, K. Tori, and
 N. Tsuji, <u>Tetrahedron Letters</u>, <u>1976</u>, 621; b) M. R. Vignon and P. J. A. Vottero, <u>ibid.</u>, <u>1976</u>,
 2445; c) Y. Watanabe, M. Arita, and Y. Kyogoku, <u>Chem. Pharm. Bull.(Tokyo)</u>, to be published.